
FORECASTING IONOSPHERIC TOTAL ELECTRON CONTENT MAPS WITH DEEP
NEURAL NETWORKS
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ABSTRACT

Satellite telecommunications and Global Navigation Satellite
Systems (GNSS) would benefit from an early prediction of
the ionospheric activity. The Total Electron Content (TEC)
values of the ionosphere are already locally predicted by mod-
els from previous studies, but no model exists to our knowl-
edge for worldwide prediction. A large amount of data for
world TEC maps is available from the Center for Orbit De-
termination in Europe (CODE). With Deep Neural Networks
(DNN), we propose a method to forecast a sequence of global
TEC maps following past given TEC maps, without introduc-
ing any prior knowledge. By combining several state-of-the-
art architectures, the proposed approach is competitive with
previous works on TEC forecast, while predicting global TEC
maps.

Index Terms— Ionosphere, TEC, forecast, deep learning,
neural networks, sequence prediction

1. INTRODUCTION

Satellite telecommunication services and Global Navigation
Satellite Systems (GNSS) are widely used services subject
to perturbation due to the ionospheric activity. During high
ionospheric activity, the path of transionospheric radio waves
indeed changes, inducing significant bitrate reduction and po-
sitioning errors [1, 2]. As a consequence, forecasting the
ionosphere state globally (i.e. worldwide) increases the abil-
ity of the users to evaluate, for example, data loss probabilities
or margin of error in positioning planning.

The ionospheric activity is usually measured using Total
Electron Content (TEC), which is the total number of elec-
trons in the ionosphere integrated along a vertical path above
a given location. It is expressed in TEC Units (1 TECU =
1016 el/m2), usually ranging from a few units to one hun-
dred TECU.

Several services exist to address TEC forecasting. They
rely on measurements provided by GNSS ground networks
[3] and aim at producing global TEC maps. CTIPe is an
experimental tool implementing complex physics models [4]
developed by the US Space Weather Prediction Center that
produces global forecasts 30 minutes ahead of real-time. In

Europe, the ESA Ionospheric Weather Expert Service Cen-
ter combines products from different national services to pro-
vide global and regional 1-hour TEC forecasts. However, the
records of the input data and forecasts are not published.

A global analytical TEC model has been proposed in [5],
using open source TEC data from the Center for Orbit Deter-
mination in Europe (CODE). This model is intended to apply
to any temporal range, without relying on a record of TEC
values.

The literature provides several methods using time series
and statistical methods to predict TEC with various forecast-
ing horizons from a few minutes to several days based on
the previous state of the ionosphere. Most of these meth-
ods [6, 7, 8, 9, 10] provide predictions above specific stations.
Among these, a few works aim at reconstructing the TEC on
a small area [11, 12] with methods such as Bezier surface-
fitting or Kriging. Some of them use machine learning, partic-
ularly neural networks [11, 13, 14], to infer the model param-
eters. However, they only focus on local stations and obtain-
ing a regional or global prediction would require one model
for each location and interpolation for not covered areas.

In this paper, we aim at predicting global TEC maps from
2 to 48 hours ahead of real-time. We propose a purely data-
driven approach using deep convolutional recurrent networks.
Deep Neural Networks (DNN) have the advantage to enable
complex modeling of large input data, such as global TEC
maps in this case, with little or no prior knowledge.

Fig. 1. TEC map example

This work is a supplementary study following the works
published in [15] and investigates the possible improvement
provided by an alternative neural network architecture. The
paper is organized as follows: Section 2 presents the recurrent
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Fig. 2. Network architecture

U-net architecture and Section 3 shows quantitative results on
TEC prediction.

2. METHOD

A neural network architecture is designed considering that we
want to output a sequence of 48 hours of TEC maps given a
number of past maps.

2.1. Data retrieving and preprocessing

Open source TEC data from the CODE is used in this study,
the TEC maps having a 5◦× 2.5◦ resolution on longitude and
latitude and 2-hour temporal resolution, covering all latitudes
and longitudes (Fig. 1). One pixel in these maps represents
the vertical TEC at this point. The study is conducted using
the data from 1/1/2014 to 12/31/2016.

A 24-hour periodicity can be easily noticed while observ-
ing the data, due to the Sun heating the ionosphere during the
day. There is no interest of having a neural network learn
deterministic phenomena such as the day-night cycle. As in
[15], we make the effect of Earth’s rotation no longer visible
to the neural network by changing the frame of reference to
Heliocentric. Finally, the data is loaded as a sequence of 60
maps (one map every two hours): the first 36 maps (i.e. 3
days) are fed to the network, the last 24 maps (i.e. 48 hours)
being the prediction targets.

2.2. Network architecture

The challenge of this study is to design a neural network able
to handle a specific sequence prediction problem in which
both the inputs and targets are a sequence of images (i.e. TEC
maps).

Global architecture. The underlying idea of this paper is
that a large part of future ionospheric activity can be inferred
from its previous states. Particularly when looking at the tem-
poral evolution of TEC maps, the main phenomena are con-
tinuous, which supports the possibility of predicting the next
map sequence. This temporal trend is extracted via Recurrent
Neural Networks (RNN), allowing temporal information to
flow between processed maps and assist the prediction. The
whole pipeline is presented in Fig. 2 (a). The sequence is pro-
cessed frame by frame in the temporal order by a recurrent
convolutional neural network (green block in Fig. 2 (a)), the
temporal information being kept during the iterations of the
process. The prediction process is achieved by recursively
feeding the next column of the network with the last predic-
tion (red arrows).

Computational block. The recurrent convolutional neural
network used to process one temporal frame is presented in
Fig. 2 (b). Convolutional Neural Networks (CNN) are used to
handle the bidimensional structure of the TEC maps. Also, as
we need to output TEC maps, an architecture similar to U-net
[16] is exploited as an alternation of convolutional layers and
recurrent units. Three Gated Recurrent Units (GRU) [17], a
special kind of Recurrent Neural Network (RNN) are used to
capture the temporal dependencies at different spatial scales.

Training For each predicted map, the individual cost func-
tion is defined as the sum of the relative error and the `1 loss
with respect to the ground truth. The final cost function is
summed over the maps produced by the successive prediction
columns.



3. RESULTS

Once it has been trained, the network can be fed with any 3-
day sequence from the test set and produce 2-day forecasts
consecutive to this sequence. The Root Mean Square (RMS)
error (1) is used to assess the performance of the model.

εRMS =

√∑
t∈S

∑
i∈Mt

(P t
i − T t

i )
2 (1)

with S the sequence of TEC maps, Mt the TEC map at t,
P the predicted map and T the ground-truth map, where t
indexes time and i is the map pixel index.

3.1. Comparison on sequence prediction

For benchmarking purposes, we set up three reference meth-
ods. The first one is a basic constant prediction: the mean
over the input sequence. The next one is called periodic pre-
diction, the predicted sequence is exactly the input of the last
two days. Finally, the approach proposed in [15] is a less
complex neural network relying on Long Short-Term Mem-
ory (LSTM) networks (an other type of RNN) and CNN. The
overall data flow (Fig. 2 (a)) is similar, but the single map
processing block (Fig. 2 (b)) is implemented by an Encoder-
LSTM-Decoder cell.

Table 1 presents the results of our experiments. We evalu-
ate the performance of our architecture against the three base-
line models. We also add in the table the scores of our model
where we replaced the convolutional GRU units by LSTM
ones.

First column presents the best scores obtained over sev-
eral trainings. The approach from [15] gets a mean RMS
of 2.407 TEC units (the average TEC value being around 30
TEC units) while the proposed network RMS averaged over
the predicted sequence is 2.373 TEC units. Comparing to pe-
riodic prediction and convolutional LSTM [15], the perfor-
mance is improved by respectively more than 8% and more
than 1% using the U-net and GRU cell.

To our interpretation, this improvement comes from the
higher interdependence between recurrent maps. Our net-
work uses three recurrent units against one in [15]. The tem-
poral behavior is captured at different spatial scales. Partic-
ularly, details do not suffer from the high compression rate
operated by the encoder in [15].

However, as shown in the second column, these networks
have difficulties to converge and on several trainings they
do not reach a satisfactory performance. The bad scores are
mainly obtained in the 24-48 hours prediction range. As
underlined by the third column (first 24 hours mean RMS
errors), our networks perform very well for the first 24 hours
predictions, overcoming [15] by 0.1 TEC unit. We understand
the difficulty to predict the 24-48 hours range as a long-term
dependency only understood by a few trainings (the best runs,

Table 1. Comparison with other methods. RMS are expressed
in TEC units

Method RMS 48h RMS 48h RMS 24h
(best) (mean) (mean)

Constant 3.18 3.18 3.12
Periodic 2.59 2.59 2.59

LSTM [15] 2.407 2.69 2.56
Ours LSTM 2.38 2.67 2.45
Ours GRU 2.373 2.69 2.43

that outperform periodic prediction on the whole 2-48 hours
range).

3.2. Comparison with literature

In Table 2, we compare the results for the proposed approach
with results from state-of-the-art models. The presented RMS
errors are computed by selecting the same latitude(s) of the
station(s) studied in the cited paper, as well as the same period
of study.

Table 2. Results of previous works

Reference RMS (ref) RMS (best)

[6] Chunli D., Jinsong P. 1.45 2.1
[13] Huang, Z., Yuan, H. ≤ 2 1.53
[9] Niu, R. et al. 3.1 0.73

The obtained results are competitive with state-of-the-art
models (their RMS errors range from 1.5 to 3 TEC units) and
the proposed approach provides global TEC map forecasting
2 to 48 hours ahead of real-time. However, the comparison
with previous works on TEC forecast is only indicative since
these works differ by their prediction horizons and since sev-
eral studies focus on one or a few specific measuring stations
instead of producing a worldwide TEC prediction.

4. CONCLUSION AND PERSPECTIVES

In this work, we extend the method of [15] for TEC sequence
prediction given the previous TEC maps. By investigating a
new network architecture based on multiple recurrent neural
units, we show that using more interlinked spatial process-
ing (convolutional layers) and temporal information passing
(recurrent units) leads to improved results.

Among the future work, the convergence issues requiring
several training will be investigated. We will also explore the
inclusion of more input information. There are complex de-
pendencies that may not depend on the previous states of the
ionosphere. As an example solar particles may interfere with
the ionosphere [18, 19]. The next step will consist in using



solar activity as an additional input to the network. Several
information sources are considered such as multispectral so-
lar images or solar wind.
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