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Abstract

In this paper we present a new approach for semantic

recognition in the context of robotics. When a robot evolves

in its environment, it gets 3D information given either by

its sensors or by its own motion through 3D reconstruction.

Our approach uses (i) 3D-coherent synthesis of scene ob-

servations and (ii) mix them in a multi-view framework for

3D labeling. (iii) This is efficient locally (for 2D seman-

tic segmentation) and globally (for 3D structure labeling).

This allows to add semantics to the observed scene that goes

beyond simple image classification, as shown on challeng-

ing datasets such as SUNRGBD or the 3DRMS Reconstruc-

tion Challenge.

1. Introduction

Visual scene understanding is a key capability to let in-

telligent robots evolve and interact in their environment.

After decades of progress, we have reached a point where

the acquisition of complex 3D scenes with fine details is

now possible through multiple ways: precise laser scanners,

commodity Red-Green-Blue-Depth (RGB-D) sensors or re-

construction techniques based on stereo and Simultaneous-

Localization and Mapping (SLAM). Theses kinds of recon-

struction are sufficient for simple navigation and collision

avoidance, but a new step is required for the robot to act

purposefully: semantic analysis of the 3D data.

In this paper we present a novel approach for semantic

labeling of the scene perceived by a robot. It is built on an

efficient multi-view approach called SnapNet [5] which es-

tablished state-of-the-art results for urban, remote sensing

data such as semantic3d [20]. We propose new multi-view

sampling strategies and better image and geometry integra-

tion. But most importantly, we show how 3D structure re-

construction and 2D semantics can mutually benefit from

each other.

3D ➝ 2D : Instantaneously, when the robot gets a single

RGB-D capture of its environment, we generate new virtual

views which are consistent with the 3D structure of the per-

ceived scene. It improve 2D semantic labeling at training

Figure 1. Illustration of the sampling strategy over single view data

from SUNRGBD (real distances and angles are not respected for

illustration purpose).

(by data augmentation) and at prediction (by voting proce-

dure).

2D ➝ 3D : At reconstruction time after capture of mul-

tiple images, adding semantics to the images allows to filter

the points used for 3D reconstruction and to obtain more

precise point clouds, which are in turn easier to label with

semantics.

Overall, the contributions of this paper are:

• SnapNet-R, an improved multi-view Convolutional

Neural Network (CNN) with simpler image and geom-

etry integration as compared to SnapNet [5];

• 3D-consistent data augmentation for 2D semantic la-

beling with state-of-the-art performances;

• massive 3D-consistent sampling of 2D virtual views

for 3D semantic labeling of reconstructed point clouds,

validated on challenging data.

The paper is organized as follows. Section 2 presents

the related work on image and point cloud semantic la-

beling. The description of our approach can be found in
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section 3: the core method SnapNet-R is explained in sec-

tion 3.1 while implementations for RGB-D data and point

clouds are detailed in section 3.2 and section 3.3 respec-

tively. Finally, we evaluate our segmentation method in sec-

tion 4.

2. Related work

Semantic labeling consists in point-wise classification of

2D or 3D data. In 2D, it became popular in the 2000s with

challenges such as the CamVid dataset [7] or the Pascal Vi-

sual Object Challenge [14], a task consisting in giving a

pixel-wise class label. In 3D, the related task is to identify

the class membership of each 3D point. It gained interest

with the availability of laser scanners which made possible

the acquisition of large point clouds for application such as

urban cartography [19] or robotics [1]. In the following, we

describe the most recent and efficient approaches for tack-

ling this problem, focusing on neural networks and robotics.

In 2D, fully-convolutional networks (FCN) [32] were

a milestone in the field of segmentation with dense pre-

diction: by keeping the 2D spatial structure all along the

network, they offered a simple and highly efficient ap-

proach. They were followed by several encoder-decoder ar-

chitectures which exploit the symmetry of input and output

spaces: U-Net [37], SegNet [3], etc. Alternatively, Lin et

al. [31] obtained state-of-the-art results using a multi-scale

patch-based architectures with Conditional-Random-Fields

(CRFs). While these networks perform in the Red-Green-

Blue (RGB) domain, robotics commonly use Depth (i.e.

distance from the sensor, denoted by D) as an additional 3D

information, as reflected by reference datasets such as Sun-

RGBD [41]. To exploit RGB-D, Gupta et al. [18] proposed

an object detection method based on Region-CNN [16] with

depth encoding and semantic labeling output. Recently,

the FuseNet architecture [22] combined an encoder-decoder

with early integration of depth at encoding stage. Later de-

velopments then lead to the Multi-View Consistent network

(MVCNet) [33] which takes benefit of unlabeled frames

captured by a mobile robot by warping semantic predictions

on these images in a common reference view (for which la-

bels are known) based on a trajectory estimate. With re-

spect to these approaches, our method uses the depth to

perform 3D-consistent data augmentation, which allows us

to transform a FuseNet (chosen for its state-of-the-art per-

formances) in a multi-view CNN. Unlike MVCNet, our

method does not require to be trained on video sequences

to extract real, nearby frames but instead it creates virtual

views from single RGB-D images, and still imposes 3D

consistence.

In 3D, designing the most discriminating features for

training a supervised classifier has been a standard ap-

proach for long. For example, in [8] expert features such

as normalized height or luminance were selected and ag-

gregated. Generic descriptors able to represent the points

and their neighborhood were also proposed: for example

the fast point feature histograms [38] or the signature his-

tograms [44]. But now, by using a deep learning framework,

representations and classifier are learned all at once. In this

field, three approaches compete.

First, voxel-based methods use a voxelization of the 3D

space to create 3D tensors in order to feed a 3D convolu-

tional neural network (CNN) [29, 45, 34], mainly for object

classification. Following this idea of 3D encoding, which

may be computationally expensive, Hackel et al. [20] pro-

posed to use local, multiscale 3D tensors around the actual

3D points. In the voxel semantic labeling task (which is

slightly different from point labeling) of the ScanNet bench-

mark [11], the proposed baseline network predicts labels for

a whole column of voxels at once according to the vox-

els’ neighborhood. Cherabier et al. [9] reduce computa-

tional cost of this kind of approach by dividing the space

and working on smaller 3D blocks.

Second, the multi-view strategy consists in applying

neural networks to 2D tensors which are collections of im-

ages of the scene. For retrieving and classifying shape

models of objects, Multi-View CNN (MVCNN) [43] takes

several pictures all around a 3D meshed object and then

performs image classification using a deep network. The

PANORAMA representation [39] introduces another trick:

projections on bounding cylinders oriented following the 3

principal directions of the volume. SnapNet [5] randomly

takes numerous views all around the scene, creates virtual

RGB and geometry-encoded images, and process it through

U-net networks. Our approach has common features with

these works: we generate snapshots of the 3D scene in or-

der to use a 2D CNN with images as input. But instead of

assigning a single label per 3D shape as in MVCNN, we

compute dense 3D point labeling. And unlike SnapNet, we

directly process RGB-D data in a single network.

Third, point-based methods work directly on unordered

point sets, using architectures with fully-connected and

pooling layers instead of convolutional layers. Thus, Point-

Net [42] can output classes for the whole 3D shape or per-

form semantic segmentation of a 3D scene. However, it

lacks the ability to capture local context at different scales.

To go around this drawback and improve generalization to

complex scenes, PointNet++ [36] introduces a feed-forward

network which performs alternatively hierarchical grouping

of points and PointNet layers optimisazion.

3. Approach: multi-view segmentation net-

works for 3D semantics

Our approach consists in 3D-consistent view generation

for improving the quality of semantic labeling. It may be

applied in two cases of semantic labeling : 2D (image and

depth map) or 3D point cloud.
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In the first case, the objective is semantic segmentation

of a unique 2D image for which some depth information

is available (such as RGB-D data captured by Microsoft

Kinect or Realsense R200 devices). For a single image, we

generate other views of the scene such that the views are

geometrically consistent with the 3D nature of the observed

scene. Thus, all views correspond to what would be seen of

the scene from a different point of view. It may be consid-

ered as data augmentation, but it differs from standard data

augmentation (such as crop, translations, flip...) because it

does not benefit only from the information contained in the

2D image plane but can also extract knowledge from the 3D

spatial structure through the set of different appearances.

In the second case, the objective is semantic labeling

of each point of a point-cloud. We focus in this study on

point cloud reconstructed from a sequence of RGB-D im-

ages or couples of stereo images, for example using SLAM

[13] which have been extensively studied in the last years.

Compared to the RGB-D mono-image case, we exploit the

higher completeness of the point cloud, allowing us to mas-

sively generate viewpoints very different from original cam-

eras positions. We extend the SnapNet approach [5] with a

new network architecture and a two-step procedure to gen-

erate a labeled point cloud: first 2D labeling of RGB-D

images generated from stereo images for filtering a large

part of outliers and then, 3D labeling using SnapNet on the

points.

3.1. SnapNet­R

In this section we present SnapNet-R, a novel version

of the previous SnapNet framework [5]. The SnapNet ap-

proach consists in independently doing the 2D semantic

segmentation of each generated image from the 3D scene

and then efficiently re-projecting the per-pixel attributed la-

bel back to its corresponding point in the 3D point cloud.

This method is based on three main parts : the 2D image

generator, the semantic segmentation technique and the ef-

ficient 3D back-projector.

Concerning the 2D image generator, the sampling strat-

egy to pick viewpoints and create virtual views has to be

adapted to the available data and to the application. In a

complete 3D reconstructed scene (given as a point cloud)

the generator has to take into account the observation scale

(e.g. getting closer to small objects like cars or far enough

from big objects like houses in order to have enough con-

text information) and the orientation angle (e.g. not to look

toward the empty sky), but can globally evolve freely in the

environment. However, such a strategy no longer holds in

single RGB-D image scenes like those from the SUNRGBD

dataset [41]. The virtual viewpoints must be chosen close to

the original camera pose. Indeed, a RGB-D image contains

very sparse information: only points directly seen from a

single point of view are captured, and every azimuth or at-

titude shift from this original pose can lead to significant

holes in the newly generated image as seen in Figure 2.

For semantic segmentation, the original approach uses

two SegNet [3], one for each modality (RGB and geometric

features), and fuses them by a residual correction module

[2]. The geometric features are handcrafted: normals, lo-

cal noise and depth to the virtual camera. Thus, this pro-

tocol implies three different steps : training the RGB ex-

pert, training the geometric expert and finally training the

fusion module. Here, we replace all theses components by

a FuseNet SF5, introduced by Hazirbas et al. [23], which

takes directly RGB and depth map as input and so only

needs one training stage.

Finally, the process of back-projection of semantic seg-

mentation information back into 3D point cloud stays un-

changed.

Figure 2. Illustration of bad sampling strategies with single view

data. Upper left: good sample close to real camera point of view,

upper right: seen through dresser, down left: seen from behind,

down right: seen from bedside lamp.

3.2. RGB­D geometric data augmentation.

The SUNRGBD dataset is composed only of single view

images (an overview is available in Figure 5). This implies a

different sampling strategy than for a full dense point cloud

scene. Besides, the SnapNet approach was first designed

to work on few big scenes and extract as many images from

each scene as wanted. But SUNRGBD is composed of 5285

training images and 5050 testing images where each one of

them is actually a scene. Thus, we can’t sample hundreds

of samples in each scene without taking the risk of explod-

ing the final number of generated images. Therefore, we

chose a sampling strategy that only generates 5 images for

each scene and thus results in 26425 images for training and

25250 images for testing.

As previously said, because of the very sparse aspect of

the 3D point cloud generated from RGB-D data, the sam-

pling strategy cannot be random. Bad examples of random

selection of viewpoints in SUNRGBD dataset are available

in Figure 2. Also, since we decided not to produce too many

images per scene we arbitrarily defined 5 camera poses:
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• the first viewpoint is the original camera viewpoint

• from the first viewpoint we get 2 more viewpoints by

changing the azimuth angle of +10°and -10°

• from the first viewpoint we get 2 more viewpoints by

changing the attitude angle of +10°and +20°.

This sampling strategy is illustrated in Figure 1. No up-

looking viewpoints are picked because objects mainly stand

on the floor and are best viewed from above. Besides, the

scenes are inside-rooms so objects are at close range and

thus, looking upper could make us miss them.

Furthermore, the depth sensors suffer from bright sur-

faces like mirrors, windows, screens or glass objects and the

measurement can be very noisy resulting in black artifacts

in depth map and thus holes in the RGB images resulting

from 3D re-projection. That is why we applied inpainting

preprocessings : based on Navier-Stokes method [4] for the

depth images and by using mean color of non-black neigh-

bors on RGB images (before training and testing).

3.3. 3D scene reconstruction and labeling

We focus here on standard scenarios for robotics, where

a robot equipped with various sensors moves around, as in

the 3D Reconstruction Meets Semantics (3DRMS) dataset

(cf. section 4.1). The image sets for reconstruction of

3DRMS consist of RGB and Gray stereo pairs. A pose esti-

mation is given for each acquisition. In this section, we pro-

pose three different reconstruction and labeling pipelines,

each of them corresponding to a different robotic use case:

from a SLAM fashion reconstruction to global multi-view

estimation. These pipelines are presented on Figure 3.

3.3.1 Reconstruction and semantic from navigation

The first pipeline –Classif 2D– represents a type of recon-

struction that can be used in robotic navigation. Labels and

points are accumulated for each acquisition image pair. This

pipeline follows 4 steps:

Depth estimation: For each camera pair, we rectify

the RGB/Gray images and the ground-truth label images.

These rectified data will be used for the whole following

tasks. Then, we use the Efficient Large-scale Stereo Match-

ing (ELAS) algorithm [15] in order to compute the dis-

parity map and add a depth channel to the RGB images,

resulting in raw RGB-D data.

2D semantic segmentation: Using the train sets of these

rectified RGB-D data we train a Fusenet SF5 for semantic

segmentation (with same condition as experiment 1 in Ta-

ble 1). Despite the low number of training images, we are

able to generate rough label prediction maps on all sets.

Point cloud reconstruction: For both train and test sets,

by taking into account the given global position of cameras

and the computed rectifications, we accumulate the points

from all RGB-D images into a global coordinates system (a

voxel grid with voxel size of 0.01 coordinate unit). Due to

the small baseline between acquisition cameras, such an ac-

cumulation produce point clouds with a lot of outliers (see

Fig. 4 up left). Therefore, we implemented a filtering strat-

egy: first, for each image we filter the points that were too

close (< 1m) or too far (> 3.5m) from the camera. The

closest points are mainly due to the on-board vehicle used

during recording and the farthest were too noisy because

of the small baseline. Then, we filter each image-relative

point set according to two filters: label based and geome-

try based. Based on labels provided by the 2D semantic

segmentation, we discard unlabeled and background points

and points in a 3 pixel margin between two different labeled

objects. Based on geometry: we compute the normals us-

ing [6] and reject points which are too aligned with camera

observation axis (dot product between normal and direction

vector from camera center to considered point > 0.7) A

snapshot of the result on test set is presented in Figure 4 up

right.

Direct labeling: like in SnapNet-R, the label at each

point is computed by voting from the FuseNet semantic map

predictions.

3.3.2 Reconstruction from navigation and 3D labeling

This method –Classif 2D-3D– is a variation from the pre-

vious pipeline. The reconstruction step is still done in a

SLAM fashion but here the 2D semantic maps are only used

for filtering. At inference time, to predict labels the former

direct labeling is replaced by SnapNet-R. At training time,

labeled training point clouds are computed using classif 2D

where the predicted semantic maps are replaced by the pro-

vided ground truth.

SnapNet-R: a label is given to each point using the

SnapNet-R framework. We adapt SnapNet-R to exploit

the point cloud topology, more complete than RGB-D data.

We compute new RGB-D pairs by randomly picking view

points. The camera position is selected such that: a) it looks

in the direction of the scene (particularly, the center of the

image is directed towards an existing point) and b) it is po-

sitioned over ground level. For each camera direction, we

take two snapshots distant of 2 and 5 meters from the tar-

geted point.

3.3.3 Off-line reconstruction and 3D labeling

The last approach –Classif 3D– is purely post processing

of the data. It is a two step pipeline : a global point cloud

reconstruction and a 3D semantic labeling.

Global multi-view reconstruction: we used the Ag-

isoft Photoscan software. By using all images at once for
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Pipelines and processing blocks are described in section 3.3. Qualitative results on 3DRMS are discussed in section 4.4.

Figure 3. 3D reconstruction and labeling pipelines for the 3DRMS challenge.

Figure 4. 3DRMS challenge point cloud (test set), incremental ac-

cumulation without filter (up left), with filter (up right) and global

reconstruction (bottom).

reconstruction, it allows to search for point matching be-

tween cameras with a greater baseline than reconstruction

from stereo pairs. It yields point clouds with less estimation

artifacts such as continuous transitions between objects in

depth map estimation (cf. Figure 4, bottom).

SnapNet-R: we labeled the point cloud with the previ-

ously trained model (from section 3.3.2).

4. Experiments and results

4.1. Datasets

We validate our approach on three datasets used in

robotics which rely on different types of sensors to get 3D

information.

Sun-RGBD is a dataset of images captured by low-

cost RGB-D cameras [41]. It combines previously ex-

isting smaller RGB-D datasets (NYUDv2 [40], Berkeley

Figure 5. Sample of the SUNRGBD dataset: the 3D semantized

point cloud and on right column RGB image, depth map and

grounth-truth (see Fig.7 for label legend).

B3DO [25] & SUN3D [46]) to reach a size of more than

10k images from 4 various RGB-D sensors. It is completed

with several types of 2D and 3D annotations over the whole

dataset which allows training and evaluating algorithms for

various task such as scene classification, semantic segmen-

tation or 3D object detection. All 37 classes are given in

Fig. 7 but to name just a few there are: table, bed, chairs,

curtain, fridge, mirror, sink, floor, wall, etc.. We also evalu-

ate on NYUDv2 [40] alone, considering the 40 classes and

13 macro-classes segmentation tasks as in [12, 32].

The 3DRMS Reconstruction Challenge provides us

with a dataset of image sequences captured by a robotic

platform. This lawn-mower-looking ground robot is

equipped with two stereo rigs for RGB and grayscale im-

ages and a Leica Lidar sensor for point cloud acquisition.

The dataset contains 5 sequences of calibrated images with

the corresponding camera pose: 4 for training (totalizing
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Figure 6. Overview of the 3DRMS Challenge dataset: training se-

quence ”boxhood row” with the 3D semantized point cloud and on

right column 2D semantic annotations over image, front-left RGB

image, front-right grayscale image.

108 views) and 1 for testing (with 125 views). For the train-

ing part only, there are also ground truth 2D semantic an-

notations and a semantically annotated 3D point cloud de-

picting the area of the training sequence (cf. Fig 6). Classes

are Unknown, Grass, Ground, Pavement, Hedge, Topiary,

Rose, Obstacle, Tree, Background.

4.2. Evaluation criteria

Let C be the set of classes (labels) and X be the input

points to classify. Let Xc ⊂ X be the points classified with

label c ∈ C. Finally, we note X∗
c the objective classification

(i.e. the ground truth) for label c.

Overall accuracy: (OA) is the proportion of well la-

beled points: OA = 1

|X|

∑

c∈C

|Xc ∩X∗
c |.

It does not take into account the unbalance between

classes but gives a good view of the global behavior of the

classifier.

Mean Accuracy (MA) is computed with the per class

accuracies : MA = 1

|C|

∑

c∈C

|Xc∩X
∗

c
|

|X∗

c
| .

Intersection over union (IoU ) penalise also false nega-

tive predictions : IoU = 1

|C|

∑

c∈C

|Xc∩X
∗

c
|

|Xc∪X∗

c
| .

4.3. Semantic segmentation of RGB­D data with
3D­consistent multi­view

SUNRGBD: The semantic segmentation task of SUN-

RGBD is a hard task. The best method to our knowledge,

the Context-CRF of Lin et al.[31], only achieves 42.3% of

IoU. To this purpose they use a very rich and complex set of

neural networks, united in a conditional random field frame-

work. They first use a neural network to get a feature map of

the input image, another pair of networks to predict patch-

to-patch semantic relation and at last, after bilinear upsam-

pling of the low resolution prediction, they apply a bound-

ary refinement post-processing with a Dense CRF [28].

Figure 7. Qualitative segmentation results on SUNRGBD [41].

The first three columns contain depth, RGB and ground-truth im-

ages. Last two columns present the results obtained by Fusenet

SF5 [23] then SnapNet-R.

By comparison, the results we show in Table 1 do not

make use of any refinement post-processing neither con-

ditional random field inference. The complete processing

pipeline of our strategy consists in wrapping several images

from a single scene to 224x224 patches, infer a low resolu-

tion semantic map through a FuseNet SF5 for each of them,

upsample each prediction map by nearest neighbor interpo-

lation, reproject all information in the original point of view,

and finally vote for the label to assign to every pixel.

Our fully implemented method corresponds to the ex-

periment 9 in Table 1. We achieve a new state of the art

result with 58.13% of mean accuracy on the SUNRGBD

semantic segmentation task, compared to the 53.4% of the

Context-CRF [31]. We also obtain 78.04% of overall accu-

racy against 78.4% for the Context-CRF and 39.61% IoU

(vs 42.3%), which are the second best known results on this

dataset.

Compared to the Fusenet SF5 framework alone, our mul-

tiview strategy leads to a pure gain of performance for all

metrics, especially on mean accuracy going from experi-

ment 1: 54.81% (52.61% in the original article [23]) to

58.13%.

If the Context-CRF method was to be used as the basic
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Training Testing

experiment preproc. augm. preproc. augm. OA MA IoU

LSTM-CF [30] (RGB) ✪ ✪ ✪ ✪ – 48.1 –

FCN 8s [32] (RGB) ✪ ✪ ✪ ✪ 68.2 38.4 27.4

Bayesian SegNet [27] (RGB) ✪ ✪ ✪ ✪ 71.2 45.9 30.7

Context-CRF [31] (RGBD) ✪ ✪ ✪ ✪ 78.4 53.4 42.3

*FuseNet SF5[23] (RGBD) ✪ ✪ ✪ ✪ 76.3 48.3 37.3

DFCN-DCRF [26] (RGBD) ✪ ✪ ✪ ✪ 76.6 50.6 39.3

*1 FuseNet SF5 ✪ ✪ ✪ ✪ 76.88 52.61 39.17

1 FuseNet SF5 ✪ ✪ ✪ ✪ 77.21 54.81 39.11

2 ✪ ✪ ✧ ✪ 74.87 52.47 36.68

3 ✪ ✪ ✧ ✧ 72.52 53.27 33.89

4 ✧ ✪ ✪ ✪ 72.81 52.02 34.32

5 ✧ ✪ ✧ ✪ 77.20 55.03 39.33

6 ✧ ✪ ✧ ✧ 70.25 56.87 30.32

7 ✧ ✧ ✪ ✪ 75.51 53.71 36.65

8 ✧ ✧ ✧ ✪ 77.57 56.70 38.83

9 SnapNet-R ✧ ✧ ✧ ✧ 78.04 58.13 39.61

10** FusetNet SF5 (HD) ✪ ✪ ✪ ✪ 71.44 45.97 29.74

11** SnapNet-R(HD) ✧ ✧ ✧ ✧ 73.55 50.07 33.46

* Computed at low resolution (224x224) as in [23] on the contrary of all other results computed at native resolution.

**We also test a High Definition strategy, cropping 224x244 patches at original resolution instead of warping image.

Table 1. SUNRGBD[41] quantitative results. All numbered experiments are using a FuseNet SF5 trained on all SUNRGBD train data (on

the contrary of [23] who removed RealSense images for depth quality reason). We replicated the result of FuseNet SF5 in experiment 1

and applied our full multi-view strategy in experiment 9. For each criterion, best values are emphasized in bold, second best values in bold

italics. Results are discussed in section 4.3.

segmentation method of our SnapNet-R approach, the re-

sults would be probably even better for each accuracy met-

rics.

Because all the information is going through a 3D step,

we had to preprocess the depth maps not to loose RGB in-

formation. Thus we present the results of this processing

in Table 1. Experiment 5 uses pre-processing at training

and testing time and leads to a little improvement over the

FuseNet SF5 alone (experiment 1). But experiment 6 shows

that multiview testing reduce IoU performance (-9 points).

This implies that multiview generated images are slightly

different from original view images and must be seen at

training time.

Some qualitative results are shown in Fig. 7. SnapNet-

R approach is less sensitive to occlusion situation (see row

5). Besides, looking at the chairs in row 6 shows a much

better edge segmentation for SnapNet-R than for FuseNet

alone. The poor results of FuseNet (row 1) can be explained

by the depth map quality. In this specific situation SnapNet-

R takes fully advantage of its inpainting processings.

We also tried to directly train at full resolution (experi-

ment 10 and 11) by picking random crops of 224x224 pix-

els. Even if this approach is not able to achieve the same

performances as the low resolution full frame experiments,

we observe the same improvement tendency by using our

multi-view data augmentation.

NYUDv2 labeled dataset is extracted from RGB-D video

sequences. Our method only generates artificial new data

based on a single frame on the contrary of MVCNet

method [33] who uses more data with the adjacent video

frames for training and testing. Results on NYUDv2 (see

Table 2) show the same trend as for SUNRGBD. The

SnapNet-R approach reacts well to more than 7 times fewer

data at training time. About the 40 classes semantic seg-

mentation task we outmatch the state of the art method

MA by +8.77 points and reach the second best score for

OA and IoU . Concerning the 13 classes task we achieve

new state of the art results, reaching 81.95% OA (+2.82),

77, 51% MA (+6.92) and 61.78% IoU (+2.71).

4.4. 3DRMS challenge

As the segmentation task is part of the ongoing chal-

lenge, the test ground truth is not available yet. Besides,

the small quantity of training data would lead to over-fitting
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Figure 8. Results of labeled reconstruction for the 3DRMS challenge, test set. Left, labels obtained with direct labeling (Classif 2D), middle

is SnapNet-R applied on stereo reconstruction (Classif 2D-3D) and right is SnapNet-R applied on multiview reconstruction (Classif 3D).

experiment OA MA IoU

40 classes

RCNN [17] (RGB-HHA) 60.3 35.1 28.6

FCN 16s [32] (RGB-HHA) 65.4 46.1 34.0

Eigen et al.[12](RGB-D-N) 65.6 45.1 34.1

Context-CRF [31] (RGB-D) 67.6 49.6 37.1

*FuseNet SF3[33] (RGB-D) 66.4 44.2 34.0

*MVCNet-MP [33](RGB-D) 70.66 51.78 40.07

FuseNet SF5 (RGB-D) 62.19 48.28 31.01

SnapNet-R (RGB-D) 69.20 60.55 38.33

13 classes

Couprie et al.[10] (RGB-D) 52.4 36.2 –

Hermans et al.[24] (RGB-D) 54.2 48.0 –

SceneNet (DHA)[21] (DHA) 67.2 52.5 –

Eigen et al.[12] (RGB-D-N) 75.4 66.9 52.6

*FuseNet SF3 [33] (RGB-D) 75.8 66.2 54.2

*MVCNet-MP [33] (RGB-D) 79.13 70.59 59.07

Eigen-SF-CRF [35] (RGB-D) 63.6 66.9 –

FuseNet SF5 (RGB-D) 78.41 72.07 56.33

SnapNet-R (RGB-D) 81.95 77.51 61.78

* Computed at low resolution (320x240) on the contrary of

all other results computed at native resolution.

Table 2. NYUDv2[40] quantitative results. For each criterion, best

values are emphasized in bold, second best values in bold italics.

Results are discussed in section 4.3.

if we had practiced cross-validation on them only. We set-

tle then for qualitative results on the testing set with models

trained on the training sets.

Reconstruction. The figure 4 compares the point sets

generated with stereo data without filters (up left), with out-

liers removal (up right) and using a global approach (bot-

tom). We have to filter rough data before using SnapNet-R:

small objects would not be seen otherwise. However stereo

baseline is small and leads to depth estimation errors that

are not corrected at accumulation. It results in multiple oc-

currences of small or thin objects such as tree trunks. In

the case of 3DRMS challenge, global approaches provides

smoother point cloud with less artifacts than incremental

stereo. Thanks to normals estimation it is visible on Fig-

ure 8 through shadow which reflects local orientations.

Labeling. Visual results provided in Figure 8 repre-

sent the predicted classes with artificial colors. Compared

to Classif 2D (left), SnapNet-R leads to more consistent la-

beling (Classif 2D-3D middle). This is due to the synthetic

cameras which provide views of the point cloud inaccessi-

ble to the ground robot. As an example, views looking at the

ground with a small incidence angle allows to capture the

global geometry of the pavement and ground areas. The ex-

periments also show the robustness of the approach for 3D

point clouds. We trained the SnapNet-R on the 2D classifi-

cation training point clouds. The regularization induced by

the CNN and the prediction smoothing with multiple snap-

shots reduce the imperfect labels due to reconstruction arti-

facts.

Perspectives. The main perspective concerns the global

reconstruction. In this paper, we used the models learned

from the Classif 2D-3D pipeline. The next step is to train

directly on reconstructed data and labels using the 3D clas-

sification framework without intermediary steps. As pre-

sented in section 3.2 dealing with RGB-D data, the closer

the data you train on are to the test data, the better the re-

sults are. This gives us a glimpse of improvement for the

Classif 3D pipeline.

5. Conclusion

We presented in this paper an extension to SnapNet for

robotics applications. We changed the core neural network

architecture and proposed a snapshot strategy adapted to

RGB-D single view data. Using the later as data augmen-

tation improve significantly the segmentation performances

on SUNRGBD and NYUDv2, leading to new state of the

art results.

We also applied SnapNet-R on the 3D Reconstruction

Meets Semantics challenge data. The three pipelines de-

scribed in the this paper correspond to different use cases

from robotic navigation to offline reconstruction. The qual-

itative results are promising and illustrate the potential of

multiview strategy for 3D data labeling.
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