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Abstract

One of the major challenges in camera pose estimation

and 3D localization is identifying features that are approx-

imately invariant across seasons and in different weather

and lighting conditions. In this paper, we present a method

for performing accurate and robust six degrees-of-freedom

camera pose estimation based only on the pixelwise seman-

tic labelling of a single query image. Localization is per-

formed using a sparse 3D model consisting of semantically

labelled points and curves, and an error function based on

how well these project onto corresponding curves in the

query image is developed. The method is evaluated on the

recently released Oxford Robotcar dataset, showing that by

minimizing this error function, the pose can be recovered

with decimeter accuracy in many cases.

1. Introduction

In 1982 Marr’s unified theory of vision [25] was pub-

lished and it has been a major source of inspiration to the

vision community. The theory resembles human percep-

tion and works on multiple levels; starting with local vi-

sual primitives and ending with a global understanding of

the scene. Interestingly, when examining today’s best per-

forming visual mapping [16, 1, 27] and localization [32, 31]

systems, the overall understanding of the scene is largely

lacking. Instead they rely on the geometry of point projec-

tions and the availability of local features that are descrip-

tive enough to be uniquely and reliably matched across im-

ages, without any semantic understanding.

The reliance on local texture descriptors makes the sys-

tem sensitive to viewpoint changes, weather conditions,

lighting and seasonal variations etc. that all affect local

scene appearance. Additionally, without any high level un-

derstanding it is hard to determine which parts of the scene

may be unreliable for localization such as cars or other mov-

ing objects. As a consequence traditional geometric local-

ization systems are insufficiently constrained under weak

local appearance information.

This paper addresses the fundamental question ”Is it pos-

Figure 1. Two examples of successfully localized pictures. In the

left column, the query images are shown together with the repro-

jection of the 3D curves corresponding to road edges and poles.

The images on the right show approximately the same location

as seen in the mapping sequences. Note that our baseline method

based on LIFT features failed to obtain consistent 2D-3D matches.

sible to perform image localization from high level infor-

mation, such as a semantic understanding of the image con-

tent?” Such information is in contrast to local texture largely

invariant to weather, lighting and seasonal changes. We

leverage the recent progress in pixelwise semantic image la-

belling to obtain robust scene descriptions suitable for long-

term localization. The basic idea is that the distribution of

semantic classes in the query image should alone be suffi-

cient to provide strong constraints on the camera pose.

To solve the problem we create a scene model consist-

ing of simple geometric primitives, such as 3D points and

curves, but with a meaningful semantic label. These are

projected into the query image and compared to its semantic

content. Our results show that this simple approach can be

used for reliable long-term localization from a single query

image, see Figure 1 for two examples. As we are only us-

ing semantically labelled information in the query image,

the added invariance allows us to localize images captured

under completely different conditions than the model. One
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may argue that we are not using all the information present

in the query image, as we only rely on the semantic la-

bels. This is of course correct, and in a practical system

one should use all the available information in the query. In

this work, we are pushing the limits and investigating if it

is possible to achieve reliable camera pose estimation at all

under these conditions. Our experimental results on long-

term 3D localization in urban street scenes are quite encour-

aging. We show that one can in many cases achieve global,

metric localization from a single image despite variations in

seasons and challenging lighting conditions where localiza-

tion approaches based on local features fail completely.

2. Related work

Traditionally, camera pose estimation (sometimes called

”camera resectioning”, or simply ”localization”) is per-

formed by matching point features between the query image

and the 3D model. In this case, the model simply consists

of a set of points in three-dimensional space. Associated

to each point is one or more descriptor vectors, describing

the local appearance of the point as it was seen when the

3D model was constructed. When a picture is to be local-

ized, feature points are extracted from the image, and each

image point is matched to the most similar point in the 3D

model. In this way, a set of 2D-3D correspondences are

obtained, from which the full six degrees-of-freedom pose

can be calculated [15]. This is in contrast to approaches

working in the image domain only, solving the problem of

”visual place recognition”, see [23] for a survey. We will

only be concerned with the 3D localization problem.

The main problem that makes long-term localization dif-

ficult is the fact that the feature descriptors used to describe

the image and the 3D scene are not invariant to the changes

in environment seen during different seasons, weather and

time of day (such as SIFT [22], ORB [29] and SURF [5]).

Valgren and Lilienthal [34] examined the suitability of SIFT

and SURF for long-term localization from a single image

and found that the upright U-SURF performed best for their

scenario. Another way to approach the long-term localiza-

tion problem is to find a new descriptor that better copes

with changes of the environment. For example, Yi et al [35]

created a new feature descriptor, called LIFT, by training a

convolutional neural network on image patches correspond-

ing to the same feature but viewed under different ambient

conditions, and found that this descriptor generated more

correct matches between pictures taken under very different

lighting conditions compared to SIFT. We use the LIFT de-

scriptor for baseline comparisons to our approach as LIFT

outperforms many competing feature descriptors by a large

margin including SIFT.

Badino et al [3, 4] performed cross-seasonal visual lo-

calization on a nine kilometer stretch of road in Pittsburgh.

The road was traversed more than a dozen times throughout

the span of a year, capturing seasonal variations and a va-

riety of weather conditions. A map was created using one

of the traversals, storing the GPS location and the SURF

features visible in the camera at more or less equally spaced

locations on the road. Localization could then be performed

on the remainder of the datasets using a Bayesian filtering

approach. The approach is hence dependent on the invari-

ance of the SURF descriptor. To compensate for feature

matches being unreliable, a sequence of consecutive images

was used to perform localization. The idea of using multi-

ple images for localization (or rather place recognition) was

also pursued in [26] where up to 300 consecutive images

were used to perform localization based on a image inten-

sity correlation measure. Self-localization using only visual

odometry information was investigated in [6].

There are a number of elaborate 3D localization algo-

rithms from a single image that have been developed for

handling large rates of incorrect matches, see [20, 7, 19, 9,

33, 30, 36, 18, 32, 31]. Still, if local feature matching is not

working properly, such approaches are doomed to fail. In

[21], a mining approach is applied to find stable local fea-

tures over time. Deep learning approaches are presented in

[17, 8]. In [28] an information-theoretic metric is derived

to compare the query image and a rendered image without

relying on individual pixels for the purpose of long-term vi-

sual localization. Though it requires a complete geometri-

cal 3D model of the environment. We explore an alternative

route to obtain cues that are reliable in the long run by using

semantic information.

In [2], object recognition in indoor scenes is applied to

obtain more stable matches for robot localization in a 2D

map. The approach is based on particle filtering, which

means that multiple observations over time are needed. An-

other source of inspiration for our work is on semantic 3D

reconstruction [14]. Here it is shown that 3D reconstruction

and multi-view stereo can be supported by using semantic

labellings in the image.

3. A motivating example

The input to the localization algorithm is the pixel-

wise semantic labelling of the query image. If the cam-

era pose can be computed accurately using only this in-

formation, then 3D localization can be performed robustly

under varying environmental conditions, provided that the

method used for semantic segmentation outputs accurate

labels under these conditions. The localization problem is

thus moved over to the segmentation itself, making accurate

long-term localization a natural consequence of the progress

in semantic labelling.

Figure 2 shows a typical semantic labelling of an image

from the Oxford Robotcar dataset [24], where the labelling

has been obtained by applying the method described in [13]

trained on the Cityscapes dataset [10]. The labelling con-
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Figure 2. A typical example of a pixelwise semantic labelling of a

picture from the Oxford Robotcar dataset.

sists of a single integer for each pixel, denoting the seman-

tic class assigned to it. The classes commonly include road,

pavement, buildings, vegetation, poles and sky, among oth-

ers. Note also that the different connected components in

the image are completely featureless and fully characterized

by their contours.

Through inspection of the image, one might expect to

be able to extract two kinds of pose information from the

image. The course spatial distribution of semantic classes

in the image should be able to provide rough information

about where in the map the image is taken; pictures taken in

parks would be dominated by vegetation, whereas pictures

taken in the city center would likely contain considerably

more buildings.

However, it also seems reasonable to expect to be able

to extract more precise metric information as well. The

road and the contour where the sky meets the distant veg-

etation provide information about the camera rotation, the

two edges of the road provide information about the lateral

position of the car on the road, and the poles on the side of

the road should provide accurate information about the lon-

gitudinal position along the road. Taking all the evidence

into account, it should thus be possible to calculate the full

six degrees-of-freedom pose from a single labelled image.

In the following section, we present a framework that han-

dles this information in a unified manner and allows effi-

cient pose calculation by minimization of a loss function.

4. Framework for semantic localization

4.1. Model

Our model consists of two types of primitives; 3D points

and space curves. The 3D points {Xi}
M
i=1

are each assumed

to belong to a single semantic category and therefore have

an associated label. Given a candidate 3 × 4 camera ma-

trix P (which encodes both orientation and position) we

compute the projection PXi and penalize dLi
(PXi), where

dLi
(x) measures the distance between x and the closest

pixel in the image labelled Li. Note that for a pixel labelled

Li the absence of a correctly labelled projection does not

incur any penalty. It is only when a 3D point is projected

into a semantically different segment that a penalty occurs.

This is essential since our 3D models are built using stan-

dard SfM systems and are therefore far from complete. Ad-

ditionally, this allows us to handle occlusion in a very sim-

ple but effective way by recording at what distances a 3D

point should be seen and adding a depth threshold to the

dLi
(PXi) term.

Since much of the information in a semantically labelled

image is stored in the curves separating different classes,

our 3D model also includes a set of space curves {Ci}
N
i=1

endowed with two semantic labels L1

i and L2

i . For the

3D curves we use a penalty
∫
PCi

ηL1

i
,L2

i

(x(s))ds, where

ηL1

i
,L2

i

(x) is a function that computes the smallest truncated

distance between the point x and an image curve separating

regions labelled L1

i and L2

i . Note that our space curves may

not correspond to actual physical curves. While the curve

separating road and sidewalk is real the skyline is not. We

still found that using these and treating them as curves far

away helps to constrain the localization. In particular they

are useful for determining orientation.

Similar to the 3D points the curves in the 3D model do

not need to explain the entire observed image. For example,

if we wish to use the skyline where the distant vegetation

meets the sky as a curve type (as we do in the experimen-

tal section), we are not penalized if the skyline curve in the

3D model is not reprojected onto the entire observed sky-

line in the image. Instead, we are only penalized for every

point where the projection of the 3D curve representing the

skyline does not coincide with the observed skyline in the

query image.

Our complete loss function is of the following form:

E(P ) =

N∑
i=1

λL1

i
,L2

i

1

li

∫
PCi

ηL1

i
,L2

i

(x(s))ds + (1)

+

M∑
i=1

γLi

1

MLi

dLi
(PXi),

where the integral is computed with arc-length parametriza-

tion in s. The numbers λL1

i
,L2

i

and γLi
are weights for the

different semantic classes, giving us the choice to give some

evidence more weight than other, if desired. In the experi-

ments performed in Sec. 5, these constants were all set to

one. li is the length of the reprojected curve i. The value

MLi
is the number of points seen in the image with label

Li. The loss function (1) can be evaluated very efficiently

by storing the distance functions ηL1

i
,L2

i

and dLi
in a look-

up table, as shown in Figure 3. When we wish to evaluate
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Figure 3. Error map η for the class ”poles” in the image in Fig-

ure 2.

E for a given pose P , the curves and points are projected

into P , and then the corresponding values for η and d are

retrieved from the pre-computed table. This makes iterative

minimization of (1) very fast.

In the framework presented above, we have not specified

what types of curves to use for localization. In the localiza-

tion experiments in Section 5, the curves Ci were piecewise

linear curves, since these are very simple to project into the

cameras and integrate over. We have also not specified any

specific semantic labels for the curves yet. The only re-

quirement for them to be useful is that it should be possible

to reliably extract these curves from a semantically labelled

picture.

4.2. Optimization of loss function

The loss function is a complicated, non-convex function

with many local minima. In order to find a good minimum

of (1), some prior knowledge about the problem structure

must be utilized. Otherwise, if gradient descent is per-

formed on an initially estimated camera pose, we run a high

risk of ending up in a local minimum unless the initial pose

happens to be very close to the global minimum. In the

experiments presented in the next section, we used curves

representing the two edges of the road and poles along the

street, as well as curves representing the contours of distant

trees across the sky. Exploiting this knowledge, the follow-

ing procedure was performed to minimize E(P ).

Given an initial estimate of the pose, gradient descent is

performed on (1) using only points and the road edges, the

terms for the other lines set to zero. This will likely yield

good estimates for the camera rotation. This is followed

by gradient descent where only the terms corresponding to

road edges and poles are included.

At this stage, the rotation and lateral position of the car

are likely close to their optimal values. It is thus reason-

able to assume that five of the six degrees-of-freedom have

been fixed: three for rotation, one for the lateral direction,

and one for the vertical direction. Since only one degree of

freedom remains, a line search is performed along this di-

mension, corresponding to the longitudinal position of the

car on the road. This direction is assumed to be along the

principal axis of the current camera. Figure 5 shows an ex-

ample of the loss function along this direction. Finally, a

last round of gradient descent is performed from the mini-

mum obtained during the line search, keeping all terms of

the loss function. All the derivatives for the gradient descent

method are computed numerically.

The final question that must be addressed is where to

obtain the initial estimate P0 of the camera matrix. In a

practical application, such as in a real autonomous driving

scenario, there is probably a quite good estimate of the car

position available from GPS (and other sensors) and internal

odometry that could be used as a starting point for the lo-

cal optimization. However, in this paper we perform global

localization from a single labelled image with no other in-

formation, and use a simple initialization method based on

the spatial statistics of the semantic labels in the query im-

age.

Specifically, the top half of the segmented image is di-

vided into six identically sized regions (two rows and three

columns). Each region is then assigned a descriptor vector

by making a histogram over all pixel classes in the region

(excluding cars and pedestrians), and then normalizing the

vector. To this vector, the two gradient histograms are then

appended which are obtained from the binary images corre-

sponding to the building and vegetation classes seen in the

region, after being normalized and scaled by a factor 1/2.

Finally, the six vectors obtained from all regions are stacked

into a final descriptor vector.

During construction of the 3D map, this descriptor vec-

tor was calculated for all images in the mapping sequence.

When later presented with an image to localize, the descrip-

tor was calculated for the query image, and then matched

to the closest descriptor from the mapping sequence. The

found camera was then used as the initial camera matrix P0

for local optimization.

5. Experiments

The presented framework for localization from semanti-

cally labelled images was evaluated on the Oxford Robotcar

dataset [24]. Two different locations were used for the ex-

periments. The first was a stretch of road approximately

one hundred meters long and was traversed three times in

slightly different weather conditions during May 6, 2014.

The second sequence was approximately 70 m long and

used to evaluate cross-seasonal localization. The data col-

lected on November 28, 2014 was used to build the 3D map,

and the data collected on the February 3, 2015 was used for
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Figure 4. An image from the mapping sequence, together with the

reprojections of the 3D curves in the model.

3D localization. Table 1 contains some more information

about the individual datasets.

To generate a gold-standard localization reference, all

the sequences were reconstructed using the publicly avail-

able structure from motion pipeline described in [11]. By

manually adding 2D correspondences between pairs of se-

quences where necessary, all trajectories were reconstructed

in the same coordinate system. Note that adding manual

correspondences was a necessity as there were very few cor-

respondences across the sequences. Bundle adjustment was

then applied to all points and cameras simultaneously.

The first sequence of each location (i.e., datasets 1 and 4

in Table 1) was used as a reference - so called mapping se-

quence - from which semantic 3D maps were created, as

will be explained below, and then the remaining sequences

were used to evaluate the localization algorithm. Since no

ground truth camera matrices are available in the dataset,

the camera matrices obtained for the test sequences after

bundle adjustment were used as a gold standard reference

that the semantic localization could be compared against.

Piecewise linear three-dimensional curves of three dif-

ferent types were reconstructed from the two mapping

datasets. The different curve types used were road edges,

poles and distant vegetation-sky intersections. Figure 4

shows an image from the mapping datasets, where the 3D

model has been projected down into the camera. Note that

the semantic 3D model is sparse in the sense that it con-

tains few elements and does not cover all the imaged se-

mantic content. As all space curves are piecewise linear,

they are represented as a discrete set of points. The poles

are thus represented by their start and end points, the road

edges consist of around 100 3D points each.

The vegetation-sky curve might at first seem like a

strange choice to include as a space curve, but it was found

that the distant skyline was extracted from the semantic seg-

menter with remarkable consistency. Note also that if we

can successfully match it to a curve in the observed image,

we have fully determined the camera rotation. The only

drawback compared with the other curves used is that the

curve is not valid when the camera gets close to the curve.

This turned out to not be a big problem in practice, since by

the time it is no longer accurate, it has vanished from the

top of the image and is no longer visible.

The road edge was automatically reconstructed by ex-

tracting four points on the road-pavement intersection in the

2D mapping image (using the semantic labellings), identi-

fying the 3D points visible within the obtained quadrilat-

eral, and then fitted a (road) plane through the correspond-

ing 3D points using RANSAC [12]. The four corner points

identified in the picture were then added to the 3D road

curve. This procedure was repeated through the mapping

sequences.

The poles were automatically reconstructed by tracking

the corresponding connected components of the segmented

pictures in the mapping sequence. Lines were then fitted to

each pole in each image using a Hough transform. A line in

3D space was then obtained for each pole by backprojecting

each observed 2D line and finding the intersection between

these planes. The top and bottom points on the 3D lines

were extracted based on at what height the top and bottom

points of the pole were seen in the images. The 3D points of

the model were obtained by triangulating consistent SIFT

matches in the mapping sequences, where consistent here

means that the 3D points satisfy the epipolar geometry and

that they project to the same semantic label in all the visible

mapping images.

The vegetation-sky curves were manually extracted by

selecting a piecewise linear arc in an image. The 3D points

seen in the image near that region were then retrieved, and

the 3D curve was placed at a depth equal to the median

depth of those points.

To perform localization of a single query image, the fol-

lowing procedure is followed. First, the image is semanti-

cally labelled. From this labelling, the error maps ηL1

i
,L2

i

and dLi
are calculated (cf. Figure 8). An initial estimate for

the camera matrix P is then obtained, from which local op-

timization of (1) is performed. All constants λ and γ in (1)

were set to one.

6. Results

The localization results are shown in Figure 6. Localiza-

tion was performed on every image in the test datasets, each

image being treated completely independently from the oth-

ers. The results for datasets 2 and 3 (cf. Table 1) are shown

together, and contain a total of 367 query images. The win-

ter sequence (dataset 5) contains 71 images in total. The top

left histogram over translational errors only show errors up
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Dataset Date of collection Purpose Weather Number of images

1 2014-05-06 Map building Cloudy, diffuse lighting, few shadows 160

2 2014-05-06 Localization Similar to above 188

3 2014-05-06 Localization Mostly cloudy, but some sun and shadows 179

4 2014-11-28 Map building Overcast, diffuse lighting, few shadows 46

5 2015-02-03 Localization Winter, snow, some sun 71

Table 1. The five datasets used for evaluating the semantic localization algorithm. The top three datasets represent the same physical road,

traversed three times during the same day, and the last two datasets represent a different road, traversed during two different seasons.
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Figure 5. Example of cross-section of the loss function along the

longitudinal direction. This line search is performed after the lat-

eral direction and rotation have been established through gradient

descent on the terms representing road edges in Eq. (1).

to 10 m, but there were 20 outliers with translational errors

greater than this, corresponding to bad initializations by the

histogram matching procedure described at the end of Sec-

tion 4. The rotational error histogram in the left column

show all rotational errors, while in the winter road sequence

(right histogram), there were 5 outliers outside the range

shown. For the translational errors in the winter road se-

quence, there are only three outlier images outside the range

shown in the translational error histogram.

The bottom row in Figure 6 shows a comparison with

a three-point RANSAC using LIFT features. For a given

value on the x-axis, the y-axis shows what fraction of the

test images were localized to within the given value of x.

A few remarks are in order. First, for the first two test

datasets, the localization accuracy is reasonably good. The

translational error is less than a meter for around 73% of the

images, and it is within two meters for 89%. The rotation

was recovered within 2◦ degrees for 89% of the images.

When an image is successfully localized by LIFT, it is

in general much more precisely localized than it is by the

semantic localization method presented here. LIFT often

recovers the pose with centimeter accuracy, whereas a pose

constrained by several clear curves in our model tends to

be localized within a few decimeters or half a meter. This

is not very surprising, since the semantic features are more

smeared out across the image than point features, and when

looking at a given semantic segmentation, there often exists

a rather large ambiguity as to where, for example, the poles

and road edges actually are located.

For the winter road sequence, the localization errors for

both LIFT and the current method were much larger than in

the other test sets. In the first sequence, all three datasets

were collected during the same day, so the dataset used to

create the map was similar in appearance to the two test

datasets. However, for the second sequence, the mapping

dataset used to create the semantic 3D map was collected

in late fall during a day when there was no snow, and the

test dataset was collected in February during a snowy day,

so the mapping and the test datasets appear very different.

The semantic localization algorithm mostly failed due to

inaccurate segmentations. Most public datasets for street-

view segmentation do not contain winter scenes, making

the segmenters less accurate on these scenes. For exam-

ple, the snowy ground was often misclassified, typically as

a car, which made the loss function inaccurate since one of

its terms evaluated how well the 3D curves corresponding

to the road edges project down onto the road edges as seen

in the query image. Figure 7 shows an example that our

algorithm failed to localize. No correct road edges were de-

tected, and the only pole that was correctly segmented was a

drain pipe on the house in the background. Since very little

useful information could be extracted from the input image,

the localization failed.

Overall, we have seen that when the segmentation is ac-

curate, it is generally possible to recover the camera rotation

and translation with good accuracy, confirming that the se-

mantic labelling conveys very strong information about the

camera pose. See Figures 1 and 8 for examples of success-

ful localizations.
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Figure 6. Localization results for the three datasets. The results for datasets 2 and 3 were similar, and have therefore been merged together.

The first row shows histograms over the translational localization errors, and the second row shows the rotational errors. On the third row,

a comparison is made with an approach based on LIFT point features. For a given value on the x-axis, the corresponding y-value gives

the proportion of localizations with a translational error less than the x-value. For example, for datasets 2 and 3, 90% of the images were

retrieved with 2.5 m or less translational error. Also shown is the translational errors before any local optimization is performed (i.e., using

only the image retrieved by the semantic retrieval initialization method).
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Figure 7. A failure case: No pavement was labelled as pavement, yielding no road edges that could be used for localization.

Figure 8. Top: An example of a successful localization from the winter sequence. The image to the top left is the semantic segmentation

of the query image. The top middle image shows the error map η corresponding to the poles observed in the segmented image. The figure

on the top right shows the original version of the query image before semantic segmentation, together with the 3D structure projected down

into the estimated camera P found by minimizing the loss function. Bottom: The error maps dLi
for the classes sidewalk, building and

vegetation, respectively, together with the corresponding 3D points Xi projected down onto the estimated camera P .

7. Conclusion

We have considered the problem of how much pose in-

formation is stored in the semantic labels of a picture alone.

We presented a method for performing full camera pose

estimation based only on the pixelwise semantic labelling

of the query image, and saw that in situations where the

labelling is accurate, it is possible to recover the camera

translation to within a few decimeters or meters accuracy,

depending on the quality and location of the features ob-

served, and the camera rotation to within a few degrees. We

have thus shown that a good semantic segmentation pro-

vides very strong constraints on the camera pose.

We believe that these results are very encouraging, since

it implies that the steady progress of pixelwise semantic la-

belling can naturally be leveraged to improve the robustness

of localization algorithms that otherwise have trouble when

mapping and localization occur far apart in time.
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